Architecture

Members

Ruslan Allahverdiyev (ra1354)
Billy Brudenell (bb1085)
Harry Erskine (hde501)
Usman Khan (muk509)

Adi Laskowski (akl532)

Ben Remmer (br894)

Ollie Stoole (0s878)

Contents

Designer story
Themes
Stereotypes

Textual Use Case
Scenarios
Preparing Ingredients (Chopping & Forming)
Cooking
Assembling Dish
Delivering Dish
Completing Scenario
Scoring Points
Idle demo

Initial Structure
Revised Structure

Justification for Revised Structure

Group 12 - T12

N OO o0 OO b~ P DA OOWOW N DMNMD



Designer story

We are developing a casual cooking management game designed to showcase the potential
of work done throughout the computer science degree. This will be shown to people
interested in studying computer science at York during open days. The game will run locally
as a desktop application.

When the game starts, the user will be taken to the ‘Main Menu’ and presented with a
number of options, one of which will start a timed game.

Once the mode starts, the user will be taken to the ‘gameplay’ screen where customers
enter the building and the user has to control 3 chefs in order to prepare and deliver the
correct order to the customers. The user has 10 minutes to correctly serve as many
customers as possible in order to accumulate the highest possible score. After the game
ends, the end score is displayed to the user.

In the main menu, if no user inputs are detected for 30 seconds, a demo of the game will
automatically play until an input is detected.

Themes
e Desktop interface
e Comprehensible layout for the ‘customers section’ and the ‘chefs section’
e Ongoing preparation where the chefs create the dish
e Top-down design with the character being able to move in any of the 8 ordinal and

cardinal directions.

Time-dependant customers

No ‘win condition’ as the game will end by default after 10 minutes

An idle phase where the game displays a demo after 30 seconds of no input
detection on the main menu

Stereotypes

We have outlined stereotypes; this was done in a group session where we used CRC cards.
This was to get us to brainstorm and find classes which represent a collection of similar
objects and responsibilities, and to know which action each class should perform.

Chef: This is a class that is controlled by the player. It can move around the level, pick up
and place ingredients. It's also possible to switch between the different chefs.
Role: Coordinator

Customer: This is a class to keep track of a customer. They arrive within a given time
interval, or if no customers remain then they order a recipe and then wait until the player
completes an order. If the order is incorrect or takes too long, their satisfaction score will
decrease.

Role: Information Holder



Dish: This class contains a list of current ingredients that the cooks have already prepared.
Once an order is delivered it is checked to see if all the correct ingredients are present. If
they are then the customer will be satisfied, otherwise the player will have to remake the
order

Role: Structure

Ingredients: This class is a general class for all ingredients. It stores what the ingredient is
and its location. Also stores if it's flippable or choppable, and its current state.
Role: Information Holder

Level: This stores certain properties of the level such as customers, cooks, the level timer
and gamemode.
Role: Structure

Station: This stores the station name and allows checking if the ingredient can be placed.
Role: Information Holder

Textual Use Case

Here we have outlined how we want the system to work at various stages in the game. This
is important in the design process as it allows us as software developers to see how the user
will interact with the system and how the customer wants the system to react.

Scenarios

Preparing Ingredients (Chopping & Forming)

Chopping: Onion, Lettuce and Tomato.
Forming: Patty
* Primary Actor: Chefs
* Precondition: Chef has picked up a vegetable and placed it on the chopping board
* Trigger: the chef interacts with the vegetable thats placed on the chopping board
* Main Success Scenario:
— 1. Chef picks up the vegetable
— 2. Chef place the vegetable on the chopping board
— 3. Chef interacts with the vegetable places on the board
* Secondary Scenarios:
—1.1. Chefs bins the vegetable
* Success Postcondition: Chef has interacted with the vegetable placed on the chopping
board, turning it from a vegetable to a chopped vegetable

Cooking

Cooking: Patty and Buns
* Primary Actor: Chefs
» Supporting Actors: Customer



* Precondition: Chef has picked up the item to be cooked
* Trigger: Ingredient is placed into a fryer

* Main Success Scenario:
— 1. Chef picks up ingredient
— 2. Chef places item into frying pan
* Secondary Scenarios:
—1.1. Chefs Burns the Ingredient
» Success Postcondition: Chef has cooked ingredient
* Minimal Postcondition: Chef has burnt the ingredient

Assembling Dish

* Primary Actor: Chef
* Precondition: All ingredients must be correctly prepared
* Trigger: When all the correct ingredients are placed on a plate together
* Main Success Scenario:

— 1. Chefs picks up prepped ingredient

— 2. Chef places it onto a plate

— 3. This is repeated until all ingredients have been put on the plate
» Secondary Scenarios:

—1.1. Chef adds the wrong combination of ingredients

- 1.1.1. The dish must be binned

» Success Postcondition: The dish is created when all ingredients are assembled together
* Minimal Postcondition: Wrong dish assembled

Delivering Dish

* Primary Actor: Chef
» Supporting Actors: Customer
* Precondition:Chef has the correct meal prepared for the customer
* Trigger: Chef interacts with the customer while holding the dish
* Main Success Scenario:
— 1. Customer asks for dish
— 2. Chef prepares the dish
— 3. Chef gives the dish to the customer
* Secondary Scenarios:
—1.1. Chef gives the customer the wrong dish
- 1.1.1. Reduced points
— 2.1. Timer runs out and customer leaves empty handed
- 2.1.1.The level is failed
» Success Postcondition: Customer receives dish
* Minimal Postcondition: Customer doesn't receive dish and leaves

Completing Scenario

* Primary Actor: Chefs
» Supporting Actors: Customers
* Precondition: Chef has cooked food for all the customers



* Trigger: All customers asking for food have received food
* Main Success Scenario:

— 1. Chefs cook food when customers ask

— 2. Chefs plate and deliver food to customers
* Secondary Scenarios:

— 1.1. The customers wait too long and leave

- 1.1.1 the level is failed

» Success Postcondition: Customers receive food, ending the game with a victory.
* Minimal Postcondition: The customers wait too long and leave, ending the game with a
fail.

Scoring Points

* Primary Actor:Chef
* Precondition: chef cooks and delivers food efficiently
* Trigger: Chef delivers food
* Main Success Scenario:
— 1. Chef cooks ingredients and assembles dish
— 2. Chef delivers dish to customer quickly
- 2.1.1. This maximises points as the dish is delivered quickly with no mistakes.
» Secondary Scenarios:
—1.1. Chefs delivers the wrong dish one or two times then the correct dish is given
- 1.1.1. The customer gets their food and you receive less points.
— 2.1. Chef delivers the wrong item 3 times
- 2.1.1. The customer leaves, scoring the user 0 points and failing the level.
* Success Postcondition: User receives maximum amount of points
* Minimal Postcondition: User receives few points

Idle demo

* Primary Actor: The Game
* Precondition: No user input
* Trigger: No user input for 30 seconds
* Main Success Scenario:
— 1. There is no user input for 30 seconds
- 1.1.1. The game starts playing itself as a demo.
* Secondary Scenarios:
—1.1. There is user input
- 1.1.1 The timer for the demo restarts.
* Success Postcondition: The idle demo plays
* Minimal Postcondition: The idle demo timer is reset.

Initial Structure

Ouir initial class diagrams were created to get a general
overview of the program. We have decided to use an entity
relationship model as this is most suited for game
development as we can implement different components



https://t12official.github.io/architecture/

independently of each other. It also allows us to make changes to one specific component
without any dependency issues. The classes are based on the stereotypes we got from
requirements, textual use cases and designer stories. These will have to be revised as we
implement and come across the problems and limitations of libGDX. This overview of the
structure allows us to see what components need to be implemented first, but also ensure
that we meet the requirements given to us by the stakeholder. Generating that means the
stakeholder will be happy with the final product as we met all their requirements. Additionally
if the requirements are changed or added too, we can easily see where to implement them
within the code without it being too costly to the customer.

We have also included a sequence diagram so it is trivial to see how the different
components will interact with each other. This will make it clearer and easier to understand
for other programmers taking on our project at a later stage. Additionally, it provides us with
an overview to make implementation as easy as possible: for example the user will never
move an ingredient directly as this has to be all done through methods under Chef.

Furthermore we have made a behaviour diagram to show the ideal flow of the program, from
building the level to when customers need to arrive and what happens after they receive
their order etc. This is important as when we have fully implemented the game we can see if
it behaves as intended by referring back to this diagram.

Revised Structure

Also on our website we have revised class diagrams using iDEA integrated UML class
diagrams that allows us to easily see what we have already implemented and anything else
that still needs to be done.

We can clearly see that there
are some changes from the
original structure, however this
is a part of the spiral method
and to be expected. We have
however kept class names the
same, this is to make it clear to
see which component satisfies
which requirements. This is
essential in software
development as it provides a
link between the abstract and
the actual code.

In the diagram we haven’t included the libGDX classes to ensure the diagram remains
readable. However, these classes are required for the implementation as it makes use of
previously defined interfaces that can be repurposed for our needs. In other words, if we
were to implement everything from the ground up this would lead to more work and less well
thought out code. Since libGDX provides lots of functionality we can just inherit from its
classes and implement additional functionality where necessary.


https://t12official.github.io/architecture/#sequence-diagram
https://t12official.github.io/architecture/#behavioural-diagram
https://t12official.github.io/architecture/#revised-class-diagram

The connection between the revised structure and the initial structure is very important and
should be maintained, as we based the initial structure on the requirements which were
given to us by the customer. Failure to link these 2 structures could result in missing
functionality and an unhappy customer, and as such it is important to link the revised
structure back to the requirements to see which are satisfied and to verify we aren’t missing
any implementations. This allows us to show the customer progress as we can tick off each
requirement as it is satisfied.

Justification for Revised Structure

Here we have outlined the different classes used in a program to justify their existence by
linking them to the requirements that they satisfy.

T12Piazza Class: FR_GAMEMODE_2, UR_GAMEMODES, UR_ACCESSIBILITY

Chef Class: FR_COOKS_MOVMENT, FR_COOKSWITCH, FR_COOKS_FLIP,
FR_COOKS_CHOP, FR_COOKS_GRAB/PLACE

Level Class: FR_GAMEMODE_1, FR_IDLE_MODE

Station Class: FR_COOKING_STATION_1, FR_COOKING_STATION 2,
FR_COOKING_STATION_3, FR_SERVING_STATION_1, FR_INGRIDENT_STATION,
FR_COUNTER, UR_STATION

Customer Class: FR_RECIPE_DISPLAY, FR_CUSTOMER_WAIT,
FR_CUSTOMER_DEMAND, FR_RECIPE_DISPLAY, UR_CUSTOMERS

Ingredient Class: FR_INGRIDENT_STATION, FR_RECIPE_1, FR_RECIPE_2,
FR_COOKS_FLIP, FR_COOKS_CHOP, FR_COOKS_GRAB/PLACE

Dish Class: FR_RECIPE_1, FR_RECIPE_2, FR_CUSTOMER_DEMAND, UR_RECIPES

Overlay Class: FR_MONEY, FR_TIMER, FR_RECIPE_DISPLAY, FR_COUNTER



